

I/O Erweiterung über RS485

Einsatz

In elektronischen Steuerungen kann man nie genug Ein- und Ausgänge haben.

Mit ExX bietet sich dem Anwender die Möglichkeit, über einen RS 485-Feldbus bis zu 32 Module mit je 16- Eingängen und 8 Ausgängen anzuschließen.

Der RS 485-Feldbus ist dafür optimal geeignet, als eine sehr preiswerte und im rauen Industrieeinsatz bewährte Schnittstelle. Für ExX bietet MOTRON mehrere Standard-Protokolle der RS 485 an.

Der Betrachter kann an Hand der LED-Reihen in der Front den aktuellen Signalzustand beobachten.

Funktion

ExX verarbeitet wahlweise *positive* oder *negative Signale*. Alle Signale sind optoentkoppelt.

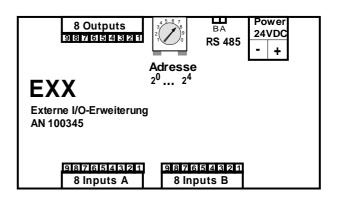
Die Ein- und Ausgänge sind in 3 Blöcken zu je 8 zusammengefasst, und zwar als 16 Eingänge und 8 Ausgänge. Jeder dieser Blöcke kann mit einem eigenen Common-Pin an positive oder negative Versorgung angeschlossen werden. Damit ist eine sehr variantenreiche Anschlussmöglichkeit an verschiedene Signalgeber, wie mechanische oder induktive Schalter, Steuerungsausgänge, Encoder, ... gegeben.

Anschluss

X2.1 Betriebsspannung + 24 *VDC*

X2.2 Masse 24 V

X1.1 RS485-A X1.2 RS485-B


X3.1 - 8 Outputs 1 - 8 X3.9 Output Common

X4.1 - 8 Inputs 1 – 8, Bank A

X4.9 Input Common

X5.1 - 8 Inputs 1 – 8, Bank B

X5.9 Input Common

LEDs

Oberste LED Power

Obere LED-Reihe Ausgänge 1-8

2 Untere LED-Reihen Eingangsbänke A und B

Drehschalter

Der Drehschalter (Stellung 0 ... 15) ist von der Oberseite, direkt neben der RS485-Verbindung, zugänglich. Damit wird die Slave-Adresse von 1 – 15 eingestellt Die Schalterstellung 0 ist für einen Sondermode reserviert.

Technische Daten

Gehäuse B x H x T 22,5 x 99 x 92 mm, für Schienenmontage

Betriebsspannung U_B 7 - 30 VDC, typ. 24 VDC, 0,05 A

Slave-Adresse 1 ... 15

Eingänge: Optoentkoppelt,

Eingangsempfindlichkeit High bei Spannungsdifferenz > 4 V

Ausgänge: Optoentkoppelt,

Ausgangsbelastung je 130 mA

Datenverkehr

Bevor der Datenverkehr funktioniert, muss der Masters initialisieren werden. Beispiel für MOTRON-BasicMaster mit APS-Bus: **CALL 2C03H**

Der Datenverkehr ist als APS-Bus via RS485 implementiert ¹⁾. Folgende Kommandos können ausgeführt werden:

Command	Aktion	Parameter	Call	Return
3	Setze alle 8 Ausgänge	Byte,Com, Adr	2C1EH	ACK
4	Setze einen Ausgang	Word,Com,Adr	2C21H	ACK
5	Lese Eingänge 07	Com,Adr	2C15H	Byte,ACK
6	Lese Eingänge 815	Com, Adr	2C15H	Byte,ACK

Alle Ausgänge setzen

Das übertragene Byte codiert binär die Zustände der 8 Ausgänge

Einen Ausgang setzen

Das übertragene Word codiert den gewählten Ausgang und den beabsichtigten Level: Word = Ausgang + 256 * Level, mit Ausgang = 0...7 und Level = 0...1

Lese Eingänge 0..7

Das empfangene Byte codiert binär die Zustände der Eingänge 0..7

Lese Eingänge 8..15

Das empfangene Byte codiert binär die Zustände der Eingänge 0..7

¹⁾ Für andere Datenprotokolle fragen Sie bitte bei uns nach.